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Abstract— Recently, smart video surveillance at the edge has 

become a trend in developing security applications since edge 

computing enables more image processing tasks to be 

implemented on the decentralised network note of the 

surveillance system. As a result, many security applications such 

as behaviour recognition and prediction, employee safety, 

perimeter intrusion detection and vandalism deterrence can 

minimise their latency or even process in real-time when the 

camera network system is extended to a larger degree. 

Technically, human detection is a key step in the 

implementation of these applications. With the advantage of 

high detection rates, deep learning methods have been widely 

employed on edge devices in order to detect human objects. 

However, due to their high computation costs, it is challenging 

to apply these methods on resource limited edge devices for real-

time applications. Inspired by the You Only Look Once 

(YOLO), residual learning and Spatial Pyramid Pooling (SPP), 

a novel form of real-time human detection is presented in this 

paper. Our approach focuses on designing a network structure 

so that the developed model can achieve a good trade-off 

between accuracy and processing time. Experimental results 

show that our trained model can process 2 FPS on Raspberry PI 

3B and detect humans with accuracies of 95.05 % and 96.81 % 

when tested respectively on INRIA and PENN FUDAN datasets. 

On the human COCO test dataset, our trained model 

outperforms the performance of the Tiny-YOLO versions. 

Additionally, compare to the SSD based L-CNN method, our 

algorithm achieves better accuracy than the other method.  

Keywords—Edge computing, smart video surveillance, YOLO, 

human detection 

I. INTRODUCTION 

Over the years, video surveillance has developed 

significantly and become indispensable in terms of safety and 

security applications in various areas such as agriculture, 

commercial objects, gastronomy, private households, retail 

and public infrastructure. In the past, the video monitoring 

task was often performed by supervisors who had to manually 

observe the camera system. This resulted in harmful health 

effects for the supervisors’ eyesight as they had to spend 

enormous amounts of time in monitoring multiple 

surveillance cameras. Today, thanks to advances in science 

and technology, security surveillance systems have become 

smarter. In recent years, intelligent video analysis has 

emerged as a promising approach to replace traditional and 

largely outmoded video surveillance solutions [1]. Through 

the means of this video analysis, supervisors are replaced by 

smart camera systems, capable of performing surveillance 

automatically. However, the problem is that when a system 

needs to handle vast numbers of cameras at the same time, 

the system needs a high processing speed and the system 

configuration must be powerful. This costs a significant 

amount of money. Not only that, the transmission of large 

amounts of video data from the camera to the server for 

processing can also be problematic due to overloading if there 

are more cameras added into the surveillance system. This 

results in large latency which does not guarantee real-time 

processing for security surveillance applications. 

The edge computing technology migrates more 

computing tasks to the connected smart things (sensors and 

actuators) at the edge of the network [2]. Edge computing 

offers a far more economical route to scalability, allowing 

companies to expand their computing capacity through a 

combination of IoT devices and edge data centres. Temporary 

disruptions in intermittent connectivity will not impact smart 

device operations just because they have lost connection to 

the cloud. Edge computing increases network performance 

by reducing latency. Since applications or services process 

data locally or in nearby edge data centres, the physical 

distance is reduced and communication delays are 

considerably lessened. Therefore, edge computing is a 

potential solution for solving the smart video surveillance 

problem.  

Human detection is a major task for various surveillance 

applications including abnormal action recognition, 

employee safety, perimeter intrusion detection and vandalism 

deterrence. Moreover, it has attracted much research interest 

in the realm of proposing solutions for implementing this task 

on edge devices. In the past, utilising handcrafted features to 

train the human detector was the main approach for 

implementing the human detection on edge devices. Due to 

the diversity and complexity of environments, human poses, 

and appearance, it was tough for researchers to develop an 

efficient manual human feature extractor [1]. In recent years, 

deep learning has emerged as a potential solution to 

overcome the problems of traditional methods. However, 

while these modern approaches are good at object detection 

and achieve high accuracy rates, their performance relies 
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heavily on GPU acceleration. Therefore, it is challenging to 

run these human detectors on computationally limited 

platforms and still guarantee the real-time requirements. 

From the above analysis, a good solution for the human 

detection problem is to build a network to achieve a good 

trade-off between accuracy and processing time. 

Accordingly, we propose a new model for human detection 

based on a combination of the YOLOv2 network, Residual 

blocks and multiple SPP. By using NNPACK [3] to optimise 

network computation, the proposed architecture not only has 

few parameters but also good accuracy and less 

computational costs. Through experimental results, the 

developed human detector can process an average of 2 frames 

per second (FPS) on the selected edge device, Raspberry PI 

3B board. According to a study of Nikouei et al., the real-time 

human detection task in real-world surveillance video 

streams can be accomplished even if the object detector 

executes only two times per second [4]. Therefore, the 

obtained results in this study satisfy the design goal of taking 

into account the computationally limited edge device.  

In summary, this work contains two major contributions. 

The first contribution is the development of a real-time 

human detector for the computationally limited edge device 

in terms of smart video surveillance. The second contribution 

is the implementation of an extensive experimental study 

including an evaluation of the proposed model on various 

human datasets and a comparison of the trained detector with 

some other human detection methods, Tiny-YOLO variants 

[5] and SSD based L-CNN [32].  

The rest of this work is organised as follows. Section 2 

delivers a brief discussion of related works regarding human 

detection at the edge. The details of the proposed human 

detection approach are described in Section 3. Section 4 

manifests and discusses the experimental results of the 

training and testing stages. Finally, Section 5 concludes the 

study.  

II. RELATED WORKS 

In the early studies of human detection on edge devices 

(specifically, Raspberry Pi variants), the general approach 

consisted of two steps: object detection and object 

classification. In the first step, moving objects can be detected 

by various techniques such as frame difference, background 

subtract, and optical flow. In the second step, the 

classification decision is made on the detected object utilising 

the features extracted of and the model used to classify [6]. In 

a study of Dalal and Triggs, the researchers utilised 

Histogram of Oriented Gradients (HOG) to extract the human 

features [7]. Then, these extracted features were adopted to 

train an SVM based human classifier. Other features applied 

for the human feature extraction were SURF [8], LBP [9], 

Edgelet [10], Haar-Like [11], Shapelet [12]. Apart from the 

SVM method, Naive Baysesian [13] and AdaBoost [14] 

represent two alternatives for developing the human 

classifier.  

In recent years, deep learning methods have greatly 

enhanced progress in various visual recognition tasks based 

on parallel computing and advances in GPU technology. The 

most common models in the object detection task are one-

stage and two-stage detection approaches. Basically, the two-

stage detection method firstly utilises the selective search or 

regional proposal network to generate a set of regions of 

interest which potentially contain target objects. Then, a 

classifier processes these region candidates to identify the 

regions representing the target objects with the highest 

confidence. As opposed to the two-stage detectors, the one-

stage detectors skip the region proposal stage and run 

detection directly over a dense sampling of possible 

locations. Therefore, the one-stage detection approaches are 

faster and simpler than the two-stage detection approaches. 

Research reveals that the R-CNN [15], Fast R-CNN [16], 

Mask R-CNN [17], YOLO [18] and SDD [19] are well-

known deep learning based object detection approaches.  

III. METHODOLOGY 

In the field of object detection, the YOLO [18] network 

model is well known for having the capability of detecting 

multiple objects in real-time. According to [20], the YOLO 

v2 is faster and stronger than the Fast RCNN, YOLOv1, SSD. 

Despite the YOLOv3 [21] providing higher accuracy than 

that of the YOLOv2, the frame rate of the YOLO v3 is not 

higher than that of the YOLOv2. Therefore, our approach is 

to utilise the YOLOv2 as the basic framework and then apply 

some modifications in the network parameters and structure 

to simultaneously achieve real-time performance and high 

accuracy on the computationally limited device.  

A. Yolo based human detection  

Like the YOLOv2 [20], our human detection method 

adopts a single deep network to predict the target location and 

the confidence score for each location from the entire image. 

Basically, the detection process is briefed in the following 

two steps: 

Step 1: The proposed model subdivides the input image 

into an m x m grid which takes responsibility for detecting 

whether the person’s centroid is in it. Through the network, 

each grid cell contains the predicted bounding boxes and their 

confidence scores. The information of each predicted box is 

expressed by (x, y, w, h). The (x, y) values denote the 

coordinates of the bounding box’s centroid, and the (w, h) 

values are the bounding box’s width and height, respectively. 

The confidence score is given by the following equations:  

              𝐶𝑜𝑛𝑓 (𝑝𝑒𝑟𝑠𝑜𝑛) = 𝑃 (𝑝𝑒𝑟𝑠𝑜𝑛) . 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ           (1) 

               𝑃 (𝑝𝑒𝑟𝑠𝑜𝑛) =  {
0,           𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛
1,    𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛

          (2) 

          𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ =  

𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑡𝑟𝑢𝑡ℎ) ∩ 𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑))

𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑡𝑟𝑢𝑡ℎ) ∪ 𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑))
     (3) 

Where, P (Person) stands for if there is a person in this grid 

cell, and IOU denotes the ratio of the union and the 

intersection of the predicted box and the ground truth box. 

Step 2: To enhance the capability of detection, the 

predicted boxes with low confidence scores will be deleted 

by setting a threshold value. Additionally, in relation to the 

remaining bounding box results, the non-maximum 

suppression algorithm is implemented to eliminate the 

redundant predicted boxes.     

B. Network design 

The proposed network structure is designed by following 

steps. In the first step, Model 1 is obtained by modifying the  



 
Fig. 1. The network structure of the Model 1 

YOLOv2 network. In the second step, Residual blocks are 

integrated into Model 1 to generate Model 2. In the final step, 

Model 3 is a combination of the Model 2 and multiple Spatial 

Pyramid Pooling blocks.  

1) Step 1: YOLOv2 network modification 

The main idea to modify the YOLOv2 is to decrease the 

input size of the network model and increase the output size 

of the network model to achieve a good trade-off between the 

accuracy and the speed. To do this, we firstly keep the first 

23 layers of the YOLOv2 model, and the rest of the YOLOv2 

model is removed. Then, we reduce the number of filters in 

the convolution layers of the obtained model. Next, we add 

some extra layers into the obtained model (Block A). This 

design enables both high level information and low level 

information to be passed to the detection layer. As a result, 

the accuracy of detection and location is enhanced.  

Table I and Fig. 1 show the parameter settings of the 

Block A and details of the Model 1, respectively when the 

size of the input image is 224 x 224 x 3. It can be seen from 

Fig. 1, aggregating feature map from multiple levels focuses 

on feature maps 28 x 28, 14 x 14 and 7 x 7. Feature maps 28 

x 28 take to a reorg layer with a stride of 2. The reorg layer 

just reshapes feature maps without changing elements. The 

TABLE I.  THE NETWORK’S PARAMETERS OF BLOCK A IN MODEL 1 

Layer Filter Size/stride  Input Output 

1 conv 8 3x3 / 1 224x224x3 224x224x8 

2 max  2x2 / 2 224x224x8 112x112x8 

3 conv  16 3x3 / 1 112x112x8 112x112x16 

4 max  2x2 / 2 112x112x16 56x56x16 

5 conv  32 3x3 / 1 56x56x16 56x56x32 

6 conv 16 1x1 / 1 56x56x32 56x56x16 

7 conv 32 3x3 / 1 56x56x16 56x56x32 

8 max   2x2 / 2 56x56x32 28x28x32 

9 conv 64 3x3 / 1 28x28x32 28x28x64 

10 conv 32 1x1 / 1 28x28x64 28x28x32 

11 conv 64 3x3 / 1 28x28x32 28x28x64 

12 max  2x2 / 2 28x28x64 14x14x64 

13 conv 128 3x3 / 1 14x14x64 14x14x128 

14 conv 64 1x1 / 1 14x14x128 14x14x64 

15 conv 128 3x3 / 1 14x14x64 14x14x128 

16 conv 64 1x1 / 1 14x14x128 14x14x64 

17 conv 128 3x3 / 1 14x14x64 14x14x128 

18 max  2x2 / 2 14x14x128 7x7x128 

19 conv 256 3x3 / 1 7x7x128 7x7x256 

20 conv 128 1x1 / 1 7x7x256 7x7x128 

21 conv 256 3x3 / 1 7x7x128 7x7x256 

22 conv 128 1x1 / 1 7x7x256 7x7x128 

23 conv 256 3x3 / 1 7x7x128 7x7x256 

 
Fig. 2. Residual block 

 
Fig. 3. The network structure of the Model 2 

width and height will be decreased by 2 times and the number 

of channels will be increased by 4 times. Feature maps 7 x 7 

take to an up-sample layer whose output is feature maps 14 x 

14. The up-sample layer increases W x H resolution of input 

by duplicating elements, without changing the number of 

channels. Then, using the route layer to merge three layers 

with a scale of 14 x 14 in depth. Finally, the output of the 

route layer is taken into 2 convolution layers to obtain the 

final feature maps 14 x 14 x 30. 

2) Residual blocks  

In a network with Residual blocks, each layer feeds into 

the next layer and the layers about 2 – 3 hops away [22]. 

According to the study of Raghunandepu [23], residual 

connection based adding new layers guarantee that the 

performance of the model could increase slightly. Therefore, 

we combine Model 1 with some Residual blocks to obtain a 

new residual deep network called Model 2. To do this, the 

Block A of Model 1 is firstly modified to attain the Block B 

for Model 2. This modification includes a replacement of all 

max-pool layers by the convolutional layers 3 x 3 with a 

stride of 2 and an addition of shortcut layers before down-

sampling layers. Then, we merge the multiple levels based 

feature maps aggregation with Residual blocks. The idea of 

this merging is based on [24]. Fig. 2 and 3 show the diagram 

of an original Residual block and the network structure of 

Model 2 with the input size of 224 x 224 x 3, respectively. 

3) Multiple Spatial Pyramid Pooling (MSPP) 

To enhance the capability of object detection, we add the 

Spatial Pyramid Pooling block into Model 2. Unlike existing 

studies of the SPP module [25], we utilise three SPP blocks 

instead of using only a single SPP block. Moreover, each SPP 

module includes 3 parallel max-pool layers with kernel sizes 

of 2 x 2, 3 x 3 and 4 x 4, and the stride of 1 is applied for all 

the max-pool layers of the SPP blocks. After concatenating 

three pooled feature maps and the SPP block’s input, the 

channel pruning is utilised to reduce and refine the SPP 

feature channels [26]. The MSPP output is the concatenation 

of the three outputs of the SPP channel pruning. Details of the 

single SPP block and the final designed model (Model 3) with



 
Fig. 4. The structure of the SPP block 

 
Fig. 5. The network structure of Model 3 

the input size 224 x 224 x 3 are displayed in Fig. 4 and Fig. 

5, respectively.  

C. NNPACK based network computation optimisation 

To speed up the human detection inference performance 

on computationally limited edge devices, we utilise 

NNPACK, an open source library available on GitHub. 

NNPACK is an acceleration package for neural network  

TABLE II.  THE NETWORK’S PARAMETERS OF BLOCK B IN MODEL 2 & 3 

Layer Filter Size/stride  Input Output 

1 conv 8 3x3 / 1 224x224x3 224x224x8 

2 conv 16 3x3 / 2 224x224x8 112x112x16 

3 conv  16 3x3 / 1 112x112x16 112x112x16 

4 conv 32 3x3 / 2 112x112x16 56x56x32 

5 conv  32 3x3 / 1 56x56x32 56x56x32 

6 conv 16 1x1 / 1 56x56x32 56x56x16 

7 conv 32 3x3 / 1 56x56x16 56x56x32 

8 res L 4     

9 conv 64 3x3 / 2 28x28x32 14x14x64 

10 conv 64  3x3 / 1 14x14x64 14x14x64 

11 conv 32 1x1 / 1 14x14x64 14x14x32 

12 conv 64 3x3 / 1 14x14x64 14x14x64 

13 res L 9     

14 conv 128 3x3 / 2 14x14x64 14x14x128 

15 conv 128 3x3 / 1 14x14x128 14x14x128 

16 conv 64 1x1 / 1 14x14x128 14x14x64 

17 conv 128 3x3 / 1 14x14x64 14x14x128 

18 conv 64 1x1 / 1 14x14x128 14x14x64 

19 conv 128 3x3 / 1 14x14x64 14x14x128 

20 res L 14     

21 conv 256 3x3 / 2 14x14x128 7x7x256 

22 conv 256 3x3 / 1 7x7x256 7x7x256 

23 conv 128 1x1 / 1 7x7x256 7x7x128 

24 conv 256 3x3 / 1 7x7x128 7x7x256 

25 conv 128 1x1 / 1 7x7x256 7x7x128 

26 conv 256 3x3 / 1 7x7x128 7x7x256 

27 res L 21     

computations [3]. This package focuses on optimising high-

performance implementations of convolution layers to speed 

up CPU inference. Moreover, this package not only supports 

various platforms including Linux, MAC OS X and Android 

but also is compatible with the Intel x86-64 processor using 

the AVX2 instruction set as well as the ARM v7 & v8 

utilising the NEON instruction set.  

D. Model training  

The MS COCO 2017 [27] dataset contains 80 object 

classes with a total of 123287 labeled images splitting to 

118k/5k for train/validation. For the problem of human 

detection, 66809 human images are extracted from this 

dataset for the purposes of this work. 64115 items of the 

extracted dataset are utilised for the training processing, and 

the rest are adopted for validation. The image background of 

the MS COCO dataset is complex. Additionally, the human 

poses, the scale of the objects and the level of occlusion are 

different and diverse. Therefore, the model trained on this 

dataset can achieve a good generalisation and deal with 

complicated environmental conditions when detecting 

individuals. 

In this study, we adopt the open-source neural network 

framework named Darknet [28] to implement the model 

training. Similar to the YOLOv2, the number of anchors are 

kept at 5. Due to the training dataset only focusing on the 

human object, the anchors’ parameters are recalculated by 

using the k-mean cluster algorithm. In order to enhance object 

detection with various image sizes, randomised input images 

are resized during the training. The human detector is trained 

in 500000 iterations. The basic learning rate is set at 0.001, 

and it will be decreased 10 times at 400000th and 450000th 

iterations. Several other training settings are reported in the 

Table III.    

IV. EXPERIMENTAL RESULTS 

A. Training and testing results on the human COCO dataset  

For the human detector training stage, the proposed 
models were trained on a computer with an Intel Core I7 – 
9700K CPU @ 3.6 GHz x 8 and 32 GB RAM running 64 bit 
Ubuntu 18.04 operating system. A RTX2080Ti GPU was 
utilised to support the training process. Fig. 6 displays training 
results of the Model 1, 2 and 3. In Fig. 6, the horizontal 
coordinate indicates the number of training iterations, while 
the vertical coordinate indicates the average loss values of 
three models during training. It can be observed from Fig. 6 
that the average loss curves of the three models tend to be 
downward although they fluctuated during training. Among 
the three trained models, the Model 3 had the lowest average 
loss overall. This result shows that the network model 
employing Residual blocks and multiple SPP modules can fit 
the human detection task better than the model which doesn’t 
use them.  

To evaluate the detection performance of the trained 
models, a popular metric called Average Precision (AP) is 
adopted in this experiment. The AP summarises the shape of 
the precision/recall curve and is defined as the mean precision 
at a set of recall levels from 0 to 1 [29]. Testing results of the 
three trained models on the human COCO validation dataset 
are reported in Table III. In Table III, while the integration of 



 

Fig. 6. Comparison of the average loss values of the three proposed models 

Residual blocks and MSPP module makes the network model 
size bigger and requires more floating pointoperations, this 
design improves the accuracy of the human detector. Indeed, 
the AP of Model 3 is the highest, reaching 54.2 % and being 
higher than that of Model 1 and 2 i.e. 5.4 % and 0.9 %, 
respectively.  

Considering how the proposed model works when the 
size of the image input is changed, we implement the Model 3 
training with various input sizes since Model 3 is the best 
model among three Model 1, 2 and 3. Table IV reports the 
training results of Model 3 where the minimum input size was 
224 x 224 and the maximum input size was 352 x 352. As 
shown in Table IV, the larger the image input size is, the 
higher that the AP of Model 3 is. However, increasing the 
image input size also enlarges the number of floating point 
operations.  

B. Runtime performance on edge devices  

In this experiment, we evaluate our proposed approach on 
a resource limited edge device. Raspberry PI 3B board with 
an ARM v7 1.2 GHz and 1 GB RAM was chosen to 
implement this experiment. This is an embedded board 
running a full operating system and equipped with sufficient 
peripherals to start execution without the addition of hardware 
[32]. Moreover, it supports various high-level programming 
languages (C, C++, Python, Java, Scratch, Ruby, etc.) and 
Linux OS variants. Therefore, this device is a good option for 
edge computing. The runtime performance of Model 3 with 
different image input sizes is displayed in Table V. One can 
see from this table, the Model 3 – 224 x 224 achieves the 
lowest processing time of 0.22s whereas the Model 3 – 352 x 
352 spends the highest processing time of 0.62s. Our goal is  

TABLE III.  TESTING RESULTS ON THE HUMAN COCO DATASET 

Model AP Model Size BFLOPs 

Model 1 48.8 % 7.4 MB 0.596 

Model 2 53.3 % 9.5 MB 0.774 

Model 3 54.2 % 11.1 MB 0.935 

TABLE IV.  TRAINING RESULTS OF MODEL 3 WITH DIFFERENT INPUT SIZES 

Model AP BFLOPs 

Model 3 (224 x 224) 54.41 % 0.935 

Model 3 (256 x 256) 57.13 % 1.222 

Model 3 (288 x 288) 59.08 % 1.546 

Model 3 (320 x 320) 61.18 % 1.909 

Model 3 (352 x 352) 62.71 % 2.31 

 

Fig. 7. Detection results  

to develop a detector so that it can process two frames per 
second in detecting human. From the table IV and V, the 
trained model with the image input size of 320 x 320 is our 
best trained model. 

C. Comparison with Tiny-YOLO variants 

The Tiny-YOLO variants include Tiny-YOLOv2 and 

Tiny-YOLOv3. To compare the performance of these 

methods with our propose method, we firstly modified the 

last convolution layer in the network of the Tiny-YOLO 

variants to enable them to detect a single object, then we used 

the same training settings of our proposed model to train these 

models. Table VI reports the accuracy, inference and model 

size of three different detection methods on the Raspberry PI 

3B and three datasets including the human COCO, INRIA 

[30] and PENN FUDAN [31] datasets. It can be seen that our 

best model achieved a better performance than Tiny-

YOLOv2 and Tiny-YOLOv3 in terms of the AP and FPS. 

The number of frames per second which our method can 

process is more than approximately double the other 

methods. Moreover, our proposed detector is of a smaller size 

than the Tiny-YOLO variants. This is useful for saving 

memory usage when running the human detection task on 

resource limited platforms.   

D. Comparison with SSD based L-CNN 

This experiment is implemented to compare our best 

human detector with the SSD based L-CNN human detector. 

To do this, we performed the human detection task on the 

same sample surveillance video in the study of the SSD based 

L-CNN method [32]. Fig.7 shows the results of both methods 

in processing this video. False Negative Rate (FNR), False 

Positive Rate (FPR) and Frame Per Second (FPS) are major 

metrics which were used for comparison purposes. Moreover, 

we captured the memory usage of our proposed model when  

TABLE V.  RUNTIME PERFORMANCE OF MODEL 3 ON RASPBERRY PI 3B 

Model 3 Raspberry PI 3B 

224 x 224 0.27 s 

256 x 256 0.34 s 

288 x 288 0.42 s 

320 x 320 0.51 s 

352 x 352 0.62 s 



TABLE VI.  COMPARISON ON THREE HUMAN TEST DATASETS 

Model 

AP 

FPS Size Human 

COCO 
INRIA 

PENN 

FUDAN 

Our best 

model 
61.18 % 95.05 % 96.81 % 1.96 11.1 MB 

Tiny – 

YOLOv2 
44.97 % 89.08 % 91.84 % 1.12 44.1 MB 

Tiny – 
YOLOv3 

53.65 % 92.02 % 91.89 % 0.95 34.7 MB 

TABLE VII.  COMPARISON WITH THE SSD BASED L-CNN METHOD 

Methods FNR FPR FPS 
Memory 

Usage 

Our approach 13.5 % 2.3 % 1.96 136.4 MB 

SSD based L-CNN [36] 18.1 % 6.6 % 1.79 122.5 MB 

running the detector on the Raspberry PI 3B in order to 

compare it with that of the SSD based L-CNN. Table VII 

shows that both methods can process average two frames per 

second. Even though the memory usage of our method is 

slightly larger than that of the SSD based L-CNN, our 

solution generally performs the human detection task better 

than the other method. Indeed, the FNR and FPR of our 

method are 4.6 % and 4.3 % smaller than those of the SSD 

based L-CNN, respectively. 

V. CONCLUSIONS 

In this paper, we introduced an approach based on 

YOLOv2 for human detection. The proposed method is a 

combination of a modified YOLOv2, Residual blocks and 

multiple Spatial Pyramid Pooling blocks. The experimental 

results show that the network model employing Residual 

blocks and multiple SPP modules can fit the human detection 

task better than the model which doesn’t use them. The 

proposed model can detect humans with high accuracy of 

95.05 % and 96.81 % while testing on the INRIA and PENN-

FUDAN datasets, respectively. Compare to the other 

methods, the proposed model outperforms the Tiny-YOLO 

variants and the SSD based L-CNN method.  
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