

YOLO Based Real-Time Human Detection for

Smart Video Surveillance at the Edge

Huy Hoang Nguyen

School of Electronics and

Telecommunications

Hanoi University of Science and

Technology

Hanoi, Vietnam
Hoang.nguyenhuy@hust.edu.vn

Van Truong Bui

School of Electronics and

Telecommunications

Hanoi University of Science and

Technology

Hanoi, Vietnam

Truong.bv154012@sis.hust.edu.vn

Thi Nhung Ta

School of Electronics and

Telecommunications

Hanoi University of Science and

Technology

Hanoi, Vietnam
Nhung.tt152789@sis.hust.edu.vn

Hung Manh Pham

Technology Center

Vnpt Technology

Hanoi, Vietnam

manhph@vnpt-technology.vn

Ngoc Cuong Nguyen

School of Electronics and

Telecommunications

Hanoi University of Science and

Technology

Hanoi, Vietnam
Cuong.nn150510@sis.hust.edu.vn

Duc Minh Nguyen

School of Electronics and

Telecommunications

Hanoi University of Science and

Technology

Hanoi, Vietnam
minh.nguyenduc1@hust.edu.vn

Abstract— Recently, smart video surveillance at the edge has

become a trend in developing security applications since edge

computing enables more image processing tasks to be

implemented on the decentralised network note of the

surveillance system. As a result, many security applications such

as behaviour recognition and prediction, employee safety,

perimeter intrusion detection and vandalism deterrence can

minimise their latency or even process in real-time when the

camera network system is extended to a larger degree.

Technically, human detection is a key step in the

implementation of these applications. With the advantage of

high detection rates, deep learning methods have been widely

employed on edge devices in order to detect human objects.

However, due to their high computation costs, it is challenging

to apply these methods on resource limited edge devices for real-

time applications. Inspired by the You Only Look Once

(YOLO), residual learning and Spatial Pyramid Pooling (SPP),

a novel form of real-time human detection is presented in this

paper. Our approach focuses on designing a network structure

so that the developed model can achieve a good trade-off

between accuracy and processing time. Experimental results

show that our trained model can process 2 FPS on Raspberry PI

3B and detect humans with accuracies of 95.05 % and 96.81 %

when tested respectively on INRIA and PENN FUDAN datasets.

On the human COCO test dataset, our trained model

outperforms the performance of the Tiny-YOLO versions.

Additionally, compare to the SSD based L-CNN method, our

algorithm achieves better accuracy than the other method.

Keywords—Edge computing, smart video surveillance, YOLO,

human detection

I. INTRODUCTION

Over the years, video surveillance has developed

significantly and become indispensable in terms of safety and

security applications in various areas such as agriculture,

commercial objects, gastronomy, private households, retail

and public infrastructure. In the past, the video monitoring

task was often performed by supervisors who had to manually

observe the camera system. This resulted in harmful health

effects for the supervisors’ eyesight as they had to spend

enormous amounts of time in monitoring multiple

surveillance cameras. Today, thanks to advances in science

and technology, security surveillance systems have become

smarter. In recent years, intelligent video analysis has

emerged as a promising approach to replace traditional and

largely outmoded video surveillance solutions [1]. Through

the means of this video analysis, supervisors are replaced by

smart camera systems, capable of performing surveillance

automatically. However, the problem is that when a system

needs to handle vast numbers of cameras at the same time,

the system needs a high processing speed and the system

configuration must be powerful. This costs a significant

amount of money. Not only that, the transmission of large

amounts of video data from the camera to the server for

processing can also be problematic due to overloading if there

are more cameras added into the surveillance system. This

results in large latency which does not guarantee real-time

processing for security surveillance applications.

The edge computing technology migrates more

computing tasks to the connected smart things (sensors and

actuators) at the edge of the network [2]. Edge computing

offers a far more economical route to scalability, allowing

companies to expand their computing capacity through a

combination of IoT devices and edge data centres. Temporary

disruptions in intermittent connectivity will not impact smart

device operations just because they have lost connection to

the cloud. Edge computing increases network performance

by reducing latency. Since applications or services process

data locally or in nearby edge data centres, the physical

distance is reduced and communication delays are

considerably lessened. Therefore, edge computing is a

potential solution for solving the smart video surveillance

problem.

Human detection is a major task for various surveillance

applications including abnormal action recognition,

employee safety, perimeter intrusion detection and vandalism

deterrence. Moreover, it has attracted much research interest

in the realm of proposing solutions for implementing this task

on edge devices. In the past, utilising handcrafted features to

train the human detector was the main approach for

implementing the human detection on edge devices. Due to

the diversity and complexity of environments, human poses,

and appearance, it was tough for researchers to develop an

efficient manual human feature extractor [1]. In recent years,

deep learning has emerged as a potential solution to

overcome the problems of traditional methods. However,

while these modern approaches are good at object detection

and achieve high accuracy rates, their performance relies

HP
Highlight

heavily on GPU acceleration. Therefore, it is challenging to

run these human detectors on computationally limited

platforms and still guarantee the real-time requirements.

From the above analysis, a good solution for the human

detection problem is to build a network to achieve a good

trade-off between accuracy and processing time.

Accordingly, we propose a new model for human detection

based on a combination of the YOLOv2 network, Residual

blocks and multiple SPP. By using NNPACK [3] to optimise

network computation, the proposed architecture not only has

few parameters but also good accuracy and less

computational costs. Through experimental results, the

developed human detector can process an average of 2 frames

per second (FPS) on the selected edge device, Raspberry PI

3B board. According to a study of Nikouei et al., the real-time

human detection task in real-world surveillance video

streams can be accomplished even if the object detector

executes only two times per second [4]. Therefore, the

obtained results in this study satisfy the design goal of taking

into account the computationally limited edge device.

In summary, this work contains two major contributions.

The first contribution is the development of a real-time

human detector for the computationally limited edge device

in terms of smart video surveillance. The second contribution

is the implementation of an extensive experimental study

including an evaluation of the proposed model on various

human datasets and a comparison of the trained detector with

some other human detection methods, Tiny-YOLO variants

[5] and SSD based L-CNN [32].

The rest of this work is organised as follows. Section 2

delivers a brief discussion of related works regarding human

detection at the edge. The details of the proposed human

detection approach are described in Section 3. Section 4

manifests and discusses the experimental results of the

training and testing stages. Finally, Section 5 concludes the

study.

II. RELATED WORKS

In the early studies of human detection on edge devices

(specifically, Raspberry Pi variants), the general approach

consisted of two steps: object detection and object

classification. In the first step, moving objects can be detected

by various techniques such as frame difference, background

subtract, and optical flow. In the second step, the

classification decision is made on the detected object utilising

the features extracted of and the model used to classify [6]. In

a study of Dalal and Triggs, the researchers utilised

Histogram of Oriented Gradients (HOG) to extract the human

features [7]. Then, these extracted features were adopted to

train an SVM based human classifier. Other features applied

for the human feature extraction were SURF [8], LBP [9],

Edgelet [10], Haar-Like [11], Shapelet [12]. Apart from the

SVM method, Naive Baysesian [13] and AdaBoost [14]

represent two alternatives for developing the human

classifier.

In recent years, deep learning methods have greatly

enhanced progress in various visual recognition tasks based

on parallel computing and advances in GPU technology. The

most common models in the object detection task are one-

stage and two-stage detection approaches. Basically, the two-

stage detection method firstly utilises the selective search or

regional proposal network to generate a set of regions of

interest which potentially contain target objects. Then, a

classifier processes these region candidates to identify the

regions representing the target objects with the highest

confidence. As opposed to the two-stage detectors, the one-

stage detectors skip the region proposal stage and run

detection directly over a dense sampling of possible

locations. Therefore, the one-stage detection approaches are

faster and simpler than the two-stage detection approaches.

Research reveals that the R-CNN [15], Fast R-CNN [16],

Mask R-CNN [17], YOLO [18] and SDD [19] are well-

known deep learning based object detection approaches.

III. METHODOLOGY

In the field of object detection, the YOLO [18] network

model is well known for having the capability of detecting

multiple objects in real-time. According to [20], the YOLO

v2 is faster and stronger than the Fast RCNN, YOLOv1, SSD.

Despite the YOLOv3 [21] providing higher accuracy than

that of the YOLOv2, the frame rate of the YOLO v3 is not

higher than that of the YOLOv2. Therefore, our approach is

to utilise the YOLOv2 as the basic framework and then apply

some modifications in the network parameters and structure

to simultaneously achieve real-time performance and high

accuracy on the computationally limited device.

A. Yolo based human detection

Like the YOLOv2 [20], our human detection method

adopts a single deep network to predict the target location and

the confidence score for each location from the entire image.

Basically, the detection process is briefed in the following

two steps:

Step 1: The proposed model subdivides the input image

into an m x m grid which takes responsibility for detecting

whether the person’s centroid is in it. Through the network,

each grid cell contains the predicted bounding boxes and their

confidence scores. The information of each predicted box is

expressed by (x, y, w, h). The (x, y) values denote the

coordinates of the bounding box’s centroid, and the (w, h)

values are the bounding box’s width and height, respectively.

The confidence score is given by the following equations:

 𝐶𝑜𝑛𝑓 (𝑝𝑒𝑟𝑠𝑜𝑛) = 𝑃 (𝑝𝑒𝑟𝑠𝑜𝑛) . 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1)

 𝑃 (𝑝𝑒𝑟𝑠𝑜𝑛) = {
0, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛
1, 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑝𝑒𝑟𝑠𝑜𝑛

 (2)

 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ =

𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑡𝑟𝑢𝑡ℎ) ∩ 𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑))

𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑡𝑟𝑢𝑡ℎ) ∪ 𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑))
 (3)

Where, P (Person) stands for if there is a person in this grid

cell, and IOU denotes the ratio of the union and the

intersection of the predicted box and the ground truth box.

Step 2: To enhance the capability of detection, the

predicted boxes with low confidence scores will be deleted

by setting a threshold value. Additionally, in relation to the

remaining bounding box results, the non-maximum

suppression algorithm is implemented to eliminate the

redundant predicted boxes.

B. Network design

The proposed network structure is designed by following

steps. In the first step, Model 1 is obtained by modifying the

Fig. 1. The network structure of the Model 1

YOLOv2 network. In the second step, Residual blocks are

integrated into Model 1 to generate Model 2. In the final step,

Model 3 is a combination of the Model 2 and multiple Spatial

Pyramid Pooling blocks.

1) Step 1: YOLOv2 network modification

The main idea to modify the YOLOv2 is to decrease the

input size of the network model and increase the output size

of the network model to achieve a good trade-off between the

accuracy and the speed. To do this, we firstly keep the first

23 layers of the YOLOv2 model, and the rest of the YOLOv2

model is removed. Then, we reduce the number of filters in

the convolution layers of the obtained model. Next, we add

some extra layers into the obtained model (Block A). This

design enables both high level information and low level

information to be passed to the detection layer. As a result,

the accuracy of detection and location is enhanced.

Table I and Fig. 1 show the parameter settings of the

Block A and details of the Model 1, respectively when the

size of the input image is 224 x 224 x 3. It can be seen from

Fig. 1, aggregating feature map from multiple levels focuses

on feature maps 28 x 28, 14 x 14 and 7 x 7. Feature maps 28

x 28 take to a reorg layer with a stride of 2. The reorg layer

just reshapes feature maps without changing elements. The

TABLE I. THE NETWORK’S PARAMETERS OF BLOCK A IN MODEL 1

Layer Filter Size/stride Input Output

1 conv 8 3x3 / 1 224x224x3 224x224x8

2 max 2x2 / 2 224x224x8 112x112x8

3 conv 16 3x3 / 1 112x112x8 112x112x16

4 max 2x2 / 2 112x112x16 56x56x16

5 conv 32 3x3 / 1 56x56x16 56x56x32

6 conv 16 1x1 / 1 56x56x32 56x56x16

7 conv 32 3x3 / 1 56x56x16 56x56x32

8 max 2x2 / 2 56x56x32 28x28x32

9 conv 64 3x3 / 1 28x28x32 28x28x64

10 conv 32 1x1 / 1 28x28x64 28x28x32

11 conv 64 3x3 / 1 28x28x32 28x28x64

12 max 2x2 / 2 28x28x64 14x14x64

13 conv 128 3x3 / 1 14x14x64 14x14x128

14 conv 64 1x1 / 1 14x14x128 14x14x64

15 conv 128 3x3 / 1 14x14x64 14x14x128

16 conv 64 1x1 / 1 14x14x128 14x14x64

17 conv 128 3x3 / 1 14x14x64 14x14x128

18 max 2x2 / 2 14x14x128 7x7x128

19 conv 256 3x3 / 1 7x7x128 7x7x256

20 conv 128 1x1 / 1 7x7x256 7x7x128

21 conv 256 3x3 / 1 7x7x128 7x7x256

22 conv 128 1x1 / 1 7x7x256 7x7x128

23 conv 256 3x3 / 1 7x7x128 7x7x256

Fig. 2. Residual block

Fig. 3. The network structure of the Model 2

width and height will be decreased by 2 times and the number

of channels will be increased by 4 times. Feature maps 7 x 7

take to an up-sample layer whose output is feature maps 14 x

14. The up-sample layer increases W x H resolution of input

by duplicating elements, without changing the number of

channels. Then, using the route layer to merge three layers

with a scale of 14 x 14 in depth. Finally, the output of the

route layer is taken into 2 convolution layers to obtain the

final feature maps 14 x 14 x 30.

2) Residual blocks

In a network with Residual blocks, each layer feeds into

the next layer and the layers about 2 – 3 hops away [22].

According to the study of Raghunandepu [23], residual

connection based adding new layers guarantee that the

performance of the model could increase slightly. Therefore,

we combine Model 1 with some Residual blocks to obtain a

new residual deep network called Model 2. To do this, the

Block A of Model 1 is firstly modified to attain the Block B

for Model 2. This modification includes a replacement of all

max-pool layers by the convolutional layers 3 x 3 with a

stride of 2 and an addition of shortcut layers before down-

sampling layers. Then, we merge the multiple levels based

feature maps aggregation with Residual blocks. The idea of

this merging is based on [24]. Fig. 2 and 3 show the diagram

of an original Residual block and the network structure of

Model 2 with the input size of 224 x 224 x 3, respectively.

3) Multiple Spatial Pyramid Pooling (MSPP)

To enhance the capability of object detection, we add the

Spatial Pyramid Pooling block into Model 2. Unlike existing

studies of the SPP module [25], we utilise three SPP blocks

instead of using only a single SPP block. Moreover, each SPP

module includes 3 parallel max-pool layers with kernel sizes

of 2 x 2, 3 x 3 and 4 x 4, and the stride of 1 is applied for all

the max-pool layers of the SPP blocks. After concatenating

three pooled feature maps and the SPP block’s input, the

channel pruning is utilised to reduce and refine the SPP

feature channels [26]. The MSPP output is the concatenation

of the three outputs of the SPP channel pruning. Details of the

single SPP block and the final designed model (Model 3) with

Fig. 4. The structure of the SPP block

Fig. 5. The network structure of Model 3

the input size 224 x 224 x 3 are displayed in Fig. 4 and Fig.

5, respectively.

C. NNPACK based network computation optimisation

To speed up the human detection inference performance

on computationally limited edge devices, we utilise

NNPACK, an open source library available on GitHub.

NNPACK is an acceleration package for neural network

TABLE II. THE NETWORK’S PARAMETERS OF BLOCK B IN MODEL 2 & 3

Layer Filter Size/stride Input Output

1 conv 8 3x3 / 1 224x224x3 224x224x8

2 conv 16 3x3 / 2 224x224x8 112x112x16

3 conv 16 3x3 / 1 112x112x16 112x112x16

4 conv 32 3x3 / 2 112x112x16 56x56x32

5 conv 32 3x3 / 1 56x56x32 56x56x32

6 conv 16 1x1 / 1 56x56x32 56x56x16

7 conv 32 3x3 / 1 56x56x16 56x56x32

8 res L 4

9 conv 64 3x3 / 2 28x28x32 14x14x64

10 conv 64 3x3 / 1 14x14x64 14x14x64

11 conv 32 1x1 / 1 14x14x64 14x14x32

12 conv 64 3x3 / 1 14x14x64 14x14x64

13 res L 9

14 conv 128 3x3 / 2 14x14x64 14x14x128

15 conv 128 3x3 / 1 14x14x128 14x14x128

16 conv 64 1x1 / 1 14x14x128 14x14x64

17 conv 128 3x3 / 1 14x14x64 14x14x128

18 conv 64 1x1 / 1 14x14x128 14x14x64

19 conv 128 3x3 / 1 14x14x64 14x14x128

20 res L 14

21 conv 256 3x3 / 2 14x14x128 7x7x256

22 conv 256 3x3 / 1 7x7x256 7x7x256

23 conv 128 1x1 / 1 7x7x256 7x7x128

24 conv 256 3x3 / 1 7x7x128 7x7x256

25 conv 128 1x1 / 1 7x7x256 7x7x128

26 conv 256 3x3 / 1 7x7x128 7x7x256

27 res L 21

computations [3]. This package focuses on optimising high-

performance implementations of convolution layers to speed

up CPU inference. Moreover, this package not only supports

various platforms including Linux, MAC OS X and Android

but also is compatible with the Intel x86-64 processor using

the AVX2 instruction set as well as the ARM v7 & v8

utilising the NEON instruction set.

D. Model training

The MS COCO 2017 [27] dataset contains 80 object

classes with a total of 123287 labeled images splitting to

118k/5k for train/validation. For the problem of human

detection, 66809 human images are extracted from this

dataset for the purposes of this work. 64115 items of the

extracted dataset are utilised for the training processing, and

the rest are adopted for validation. The image background of

the MS COCO dataset is complex. Additionally, the human

poses, the scale of the objects and the level of occlusion are

different and diverse. Therefore, the model trained on this

dataset can achieve a good generalisation and deal with

complicated environmental conditions when detecting

individuals.

In this study, we adopt the open-source neural network

framework named Darknet [28] to implement the model

training. Similar to the YOLOv2, the number of anchors are

kept at 5. Due to the training dataset only focusing on the

human object, the anchors’ parameters are recalculated by

using the k-mean cluster algorithm. In order to enhance object

detection with various image sizes, randomised input images

are resized during the training. The human detector is trained

in 500000 iterations. The basic learning rate is set at 0.001,

and it will be decreased 10 times at 400000th and 450000th

iterations. Several other training settings are reported in the

Table III.

IV. EXPERIMENTAL RESULTS

A. Training and testing results on the human COCO dataset

For the human detector training stage, the proposed
models were trained on a computer with an Intel Core I7 –
9700K CPU @ 3.6 GHz x 8 and 32 GB RAM running 64 bit
Ubuntu 18.04 operating system. A RTX2080Ti GPU was
utilised to support the training process. Fig. 6 displays training
results of the Model 1, 2 and 3. In Fig. 6, the horizontal
coordinate indicates the number of training iterations, while
the vertical coordinate indicates the average loss values of
three models during training. It can be observed from Fig. 6
that the average loss curves of the three models tend to be
downward although they fluctuated during training. Among
the three trained models, the Model 3 had the lowest average
loss overall. This result shows that the network model
employing Residual blocks and multiple SPP modules can fit
the human detection task better than the model which doesn’t
use them.

To evaluate the detection performance of the trained
models, a popular metric called Average Precision (AP) is
adopted in this experiment. The AP summarises the shape of
the precision/recall curve and is defined as the mean precision
at a set of recall levels from 0 to 1 [29]. Testing results of the
three trained models on the human COCO validation dataset
are reported in Table III. In Table III, while the integration of

Fig. 6. Comparison of the average loss values of the three proposed models

Residual blocks and MSPP module makes the network model
size bigger and requires more floating pointoperations, this
design improves the accuracy of the human detector. Indeed,
the AP of Model 3 is the highest, reaching 54.2 % and being
higher than that of Model 1 and 2 i.e. 5.4 % and 0.9 %,
respectively.

Considering how the proposed model works when the
size of the image input is changed, we implement the Model 3
training with various input sizes since Model 3 is the best
model among three Model 1, 2 and 3. Table IV reports the
training results of Model 3 where the minimum input size was
224 x 224 and the maximum input size was 352 x 352. As
shown in Table IV, the larger the image input size is, the
higher that the AP of Model 3 is. However, increasing the
image input size also enlarges the number of floating point
operations.

B. Runtime performance on edge devices

In this experiment, we evaluate our proposed approach on
a resource limited edge device. Raspberry PI 3B board with
an ARM v7 1.2 GHz and 1 GB RAM was chosen to
implement this experiment. This is an embedded board
running a full operating system and equipped with sufficient
peripherals to start execution without the addition of hardware
[32]. Moreover, it supports various high-level programming
languages (C, C++, Python, Java, Scratch, Ruby, etc.) and
Linux OS variants. Therefore, this device is a good option for
edge computing. The runtime performance of Model 3 with
different image input sizes is displayed in Table V. One can
see from this table, the Model 3 – 224 x 224 achieves the
lowest processing time of 0.22s whereas the Model 3 – 352 x
352 spends the highest processing time of 0.62s. Our goal is

TABLE III. TESTING RESULTS ON THE HUMAN COCO DATASET

Model AP Model Size BFLOPs

Model 1 48.8 % 7.4 MB 0.596

Model 2 53.3 % 9.5 MB 0.774

Model 3 54.2 % 11.1 MB 0.935

TABLE IV. TRAINING RESULTS OF MODEL 3 WITH DIFFERENT INPUT SIZES

Model AP BFLOPs

Model 3 (224 x 224) 54.41 % 0.935

Model 3 (256 x 256) 57.13 % 1.222

Model 3 (288 x 288) 59.08 % 1.546

Model 3 (320 x 320) 61.18 % 1.909

Model 3 (352 x 352) 62.71 % 2.31

Fig. 7. Detection results

to develop a detector so that it can process two frames per
second in detecting human. From the table IV and V, the
trained model with the image input size of 320 x 320 is our
best trained model.

C. Comparison with Tiny-YOLO variants

The Tiny-YOLO variants include Tiny-YOLOv2 and

Tiny-YOLOv3. To compare the performance of these

methods with our propose method, we firstly modified the

last convolution layer in the network of the Tiny-YOLO

variants to enable them to detect a single object, then we used

the same training settings of our proposed model to train these

models. Table VI reports the accuracy, inference and model

size of three different detection methods on the Raspberry PI

3B and three datasets including the human COCO, INRIA

[30] and PENN FUDAN [31] datasets. It can be seen that our

best model achieved a better performance than Tiny-

YOLOv2 and Tiny-YOLOv3 in terms of the AP and FPS.

The number of frames per second which our method can

process is more than approximately double the other

methods. Moreover, our proposed detector is of a smaller size

than the Tiny-YOLO variants. This is useful for saving

memory usage when running the human detection task on

resource limited platforms.

D. Comparison with SSD based L-CNN

This experiment is implemented to compare our best

human detector with the SSD based L-CNN human detector.

To do this, we performed the human detection task on the

same sample surveillance video in the study of the SSD based

L-CNN method [32]. Fig.7 shows the results of both methods

in processing this video. False Negative Rate (FNR), False

Positive Rate (FPR) and Frame Per Second (FPS) are major

metrics which were used for comparison purposes. Moreover,

we captured the memory usage of our proposed model when

TABLE V. RUNTIME PERFORMANCE OF MODEL 3 ON RASPBERRY PI 3B

Model 3 Raspberry PI 3B

224 x 224 0.27 s

256 x 256 0.34 s

288 x 288 0.42 s

320 x 320 0.51 s

352 x 352 0.62 s

TABLE VI. COMPARISON ON THREE HUMAN TEST DATASETS

Model

AP

FPS Size Human

COCO
INRIA

PENN

FUDAN

Our best

model
61.18 % 95.05 % 96.81 % 1.96 11.1 MB

Tiny –

YOLOv2
44.97 % 89.08 % 91.84 % 1.12 44.1 MB

Tiny –
YOLOv3

53.65 % 92.02 % 91.89 % 0.95 34.7 MB

TABLE VII. COMPARISON WITH THE SSD BASED L-CNN METHOD

Methods FNR FPR FPS
Memory

Usage

Our approach 13.5 % 2.3 % 1.96 136.4 MB

SSD based L-CNN [36] 18.1 % 6.6 % 1.79 122.5 MB

running the detector on the Raspberry PI 3B in order to

compare it with that of the SSD based L-CNN. Table VII

shows that both methods can process average two frames per

second. Even though the memory usage of our method is

slightly larger than that of the SSD based L-CNN, our

solution generally performs the human detection task better

than the other method. Indeed, the FNR and FPR of our

method are 4.6 % and 4.3 % smaller than those of the SSD

based L-CNN, respectively.

V. CONCLUSIONS

In this paper, we introduced an approach based on

YOLOv2 for human detection. The proposed method is a

combination of a modified YOLOv2, Residual blocks and

multiple Spatial Pyramid Pooling blocks. The experimental

results show that the network model employing Residual

blocks and multiple SPP modules can fit the human detection

task better than the model which doesn’t use them. The

proposed model can detect humans with high accuracy of

95.05 % and 96.81 % while testing on the INRIA and PENN-

FUDAN datasets, respectively. Compare to the other

methods, the proposed model outperforms the Tiny-YOLO

variants and the SSD based L-CNN method.

ACKNOWLEDGMENT

This research is funded by Ministry of Science and
Technology of Vietnam (MOST) under grant number
10/2018/DTCTKC.01.14/16-20.

REFERENCES

[1] H. H. Nguyen, T. N. Ta, “Turnstile jumping detection in real-time
video surveillance”, Image and Video Technology, PSIVT 2019,
LNCS, vol 11854, C. Lee, Z. Su, A. Sugimoto, Eds. Springer, Cham.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: Vision
and challenges”, IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, 2016.

[3] M. Dukhan, “NNPACK: Acceleration package for neural networks on
multi-core CPUs”, 2016. [Online]. Available:
https://github.com/Maratyszcza/NNPACK

[4] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B. Y. Choi, T. R. Faughnan,
“Real-time human detection as an edge service enabled by a
lightweight CNN”, IEEE International Conference on Edge Computing
(EDGE), San Francisco, CA, USA, 2018.

[5] J. Redmon, A. Farhadi, “YOLO: Real-Time object detection”, 2016.
[Online]. Available: https://pjreddie.com/darknet/yolo

[6] A. F. Khalifa, E. Badr, H. N. Elmahdy, “A survey on human detection
surveillance systems for Raspberry Pi”, in Image and Vision
Computing, vol. 85, pp. 1 – 13, 2019.

[7] N. Dalal, B. Triggs, “Histograms of orirented gradients for human
detection”, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), San Diego, CA, USA, 2015.

[8] H. Bay, T. Tuytelaars, L. V. Gool, “SURF: Speed Up Robust Feature”,
ECCV 2006, LNCS, vol. 3951, pp. 404-417, 2006.

[9] A. Oliver, X. Llad, J. Freixenet, and J. Mart, “False Positive
Reductionin Mammographic Mass Detection Using Local Binary
Patterns,”in MICCAI, Springer, Berlin, Heidelberg, pp. 286–293, 2007

[10] K. Bhuvaneswari, H. A. Rauf, “Edgelet based human detection and
tracking by combined segmentation and soft decision”, International
Conference on Control, Automation, Communication and Energy
Conservation, 2009.

[11] H. V. Dung, K. H. Jo, A. Vavilin, “Fast human detection based on
parallelogram Haar-like features”, 38th Annual Conference on IEEE
Industrial Electronics Society (IECON), 2012.

[12] P. Sabzmeydani, G. Mori, “Detecting Pedestrians by Learning Shapelet
Features”, The IEEE Conference on Computer Vision and Pattern
Recognition, June 17-22, 2007

[13] H. L. Eng, J. Wang, A. H. Kam, W. Y. Yau, “A Bayesian framework
for robust human detection and occlusion handling human shape
model”, Proceedings of the 17th International Conference on Pattern
Recognition, ICPR 2004.

[14] T. Adiono, K. S. Parkoso, C. D. Putratama, “HOG-AdaBoost
Implementation for Human Detection Employing FPGA ALTERA
DE2-115”, International Journal of Advanced Computer Science and
Applications,vol. 9, no. 10, 2018

[15] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation”, IEEE
Conference on Computer Vision and Pattern Recognition, 2014

[16] R. Girshick, “Fast R-CNN”, IEEE Conference on Computer Vision and
Pattern Recognition, 2015

[17] K. He, G. Gkioxari, P. Dollar, R. Girshick, “Mask R-CNN”, IEEE
Conference on Computer Vision and Pattern Recognition, 2018

[18] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once:
Unified, Real-Time Object Detection”, IEEE Conference on Computer
Vision and Pattern Recognition, June 27-30, 2016.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, “SSD:
Single shot multibox detector”, IEEE Computer Vision and Pattern
Recognition, (CVPR), 2015

[20] J. Redmon, A. Farhadi, “YOLO9000: Better, Faster, Stronger”, IEEE
Conf on Computer Vision and Pattern Recognition, July 21-26, 2017.

[21] J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement”,
ArXiv, 2018.

[22] Sabyasachi Sahoo, “Residual blocks – Building blocks of ResNet”,
2018. [Online]. Available: https://towardsdatascience.com/residual-
blocks-building-blocks-of-resnet-fd90ca15d6ec

[23] Raghunandepu, “Understanding and implementation of Residual
Networks (Resnets), 2018. [Online]. Available:
https://medium.com/analytics-vidhya/understanding-and-
implementation-of-residual-networks-resnets-b80f9a507b9c

[24] C. Y. Wang, H. Y. Mark, P. Y. Chen, J. W. Hsieh, “Enriching Variety
of Layer-wise Learning Information by Gradient Combination”, ICCV
Workshop on Low-Power Computer Vision, 2019

[25] K. He, X. Zhang, S. Ren, J. Sun, “Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition”, IEEE Trans on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp 1904 –
1916, 2015.

[26] P. Zhang, Y.Zhong, X. Li, “SlimYOLOv3: Narrower, Faster and Better
for Real-Time UAV Applications”, ArXiv, vol. abs/1907/11093, 2019

[27] “COCO Dataset,” http://cocodataset.org, accessed: 2019-07-23.

[28] Darknet. Available: https://pjreddie.com/darknet/

[29] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman,
“The PASCAL Visual Object Classes (VOC) Challenge”,
International Journal of Computer Vision, vol 88, pp. 303-338, 2010.

[30] INRIA dataset. Available: http://pascal.inrialpes.fr/data/human/

[31] PENN-FUDAN dataset. Available: https://www.cis.upenn.edu/~jshi/

[32] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B. Y. Choi, T. R. Faughnan,
“Smart surveillance as an Edge network service: from Haar-Cascade,
SVM to a Lightweight CNN”, IEEE 4th International Conference on
Collaboration and Internet Computing (CIC), 2018.

